DNA specificity enhanced by sequential binding of protein monomers.

نویسندگان

  • J J Kohler
  • S J Metallo
  • T L Schneider
  • A Schepartz
چکیده

Transcriptional activation often requires the rapid assembly of complexes between dimeric transcription factors and specific DNA sites. Here we show that members of the basic region leucine zipper and basic region helix-loop-helix zipper transcription factor families follow an assembly pathway in which two protein monomers bind DNA sequentially and form their dimerization interface while bound to DNA. Nonspecific protein or DNA competitors have little effect on the rate of assembly along this pathway, but slow a competing pathway in which preformed dimers bind DNA. The sequential monomer-binding pathway allows the protein to search for and locate a specific DNA site more quickly, resulting in greater specificity prior to equilibrium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid purification of HU protein from Halobacillus karajensis

The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...

متن کامل

Threonine 435 of Escherichia coli DnaA protein confers sequence-specific DNA binding activity.

The Escherichia coli DnaA protein, as a sequence-specific DNA binding protein, promotes the initiation of chromosomal replication by binding to four asymmetric 9-mer sequences termed DnaA boxes in oriC. Characterization of N-terminal, C-terminal, and internal in-frame deletion mutants identified residues near the C terminus of DnaA protein required for DNA binding. Furthermore, genetic and bioc...

متن کامل

Spatially directed assembly of a heterotetrameric Cre-Lox synapse restricts recombination specificity.

The pseudo-fourfold homotetrameric synapse formed by Cre protein and target DNA restricts site-specific recombination to sequences containing dyad-symmetric Cre-binding repeats. Mixtures of engineered altered-specificity Cre monomers can form heterotetramers that recombine nonidentical asymmetric sequences, allowing greater flexibility for target site selection in the genome of interest. Howeve...

متن کامل

Stepwise androgen receptor dimerization.

Androgen-regulated gene expression is a highly coordinated dynamic process mediated by androgen receptor (AR) ligand binding and DNA binding, and by specific AR protein-protein interactions. The latter include DNA-binding domain (D-box) interactions in AR homodimers, and the interaction of the FQNLF motif in the AR N-terminal domain and the coactivator groove in the ligand-binding domain (N/C i...

متن کامل

Combinatorial bZIP dimers display complex DNA-binding specificity landscapes

How transcription factor dimerization impacts DNA-binding specificity is poorly understood. Guided by protein dimerization properties, we examined DNA binding specificities of 270 human bZIP pairs. DNA interactomes of 80 heterodimers and 22 homodimers revealed that 72% of heterodimer motifs correspond to conjoined half-sites preferred by partnering monomers. Remarkably, the remaining motifs are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 21  شماره 

صفحات  -

تاریخ انتشار 1999